SPECTRE-MAC-MON

MACRO ASSEMBLER/MONITOR
MICRODRIVE COMPATIBLE
FOR THE SPECTRUM 48K

FROM OASIS SOFTWARE

Author - Philip Harvey

CONTENTS

EDITOR ASSEMBLER
Introduction

Command Descriptiens
Command Functions

MACRQ ASSEMBLER (SPECTRE-MAL)
Qverview

User Guide

Expressions

Macro Definitions

Macros with Arguments
Constants

Sets of Constants

Number subranges

Conditional Assembly
Argument Modification
Iteration and the Yariable
Assembler Terminating Information
Creating a Library

General User Guide

Guide to Options

Load Directives

List Directives

System Variables

Errors

SPECTRUM MOMITOR (SPECTRE-MON}
Loading

Introduction

Commands in Detail

Command Summary

MICRODRIVE VERSION

Page
Page
Page
Page

Page
Page
Page
Page
Page
Fage
Fage
Page
Page
Page
Page
Page
Page
Page
Page
Page
Fage
Page
Page
Page

Page
Page
Page
Page
Page

Page

=S

19
13
19
20
25

EDITOR ASSEMBLER
RUN to execute

INTRODUCTION

The SPECTRE-MAC Editor/Assembler is a professienal package written for the 48K
Sinclatr IX-Spectrum Micro-computer.

The editor gives you the ability to create lines of up to 254 characters. Tao give
you extra leng lines the editor uses a unique ‘side scrolling' facility. Fast
up/down cursor movement can be used, even while in either of the text entry modes.
This facility is aimed at speeding up editing. Other facilities incude: find
string, replace string, copy block, join files and many more.

With the assembler, macro-instructions can be defined with almost any syntax.
Four number bases are available, hex, decimal, binary and octal. fonditional
assembly is supported using statements such as 1F-END and 1F-ELSE-END, Variable
toops can be produced using the REPEAT-UNTIL and BREAX commands.

SPECTRE-MAC is a 16K program and cccupies the memory from 60004 to AOGOH, with
files at AQOOH.

Loading
To load SPECTRE-MAC Type: LOAD"!

Command Descripticn
A general rule to note is thet while the cursor is flashing, you can always abort
from any of the commands by pressing CAPS SHIFT/EDIT (except in COMMANDS 0, J &

W).
<Command A> - Again find

This command will search for the next occurrence of either, the string entered
when in command L (LOCATE), or the first string enterad while in command R
(REPLACE).

The search will begin on the line below the cursor, and will only end if it finds
the right string, or it wraps round to reach the end of the cursor line. [If the
string cannot be found then the words "NOT FOUND® will appear on the status iine.

Command B> - Bottom of file

Once pressed the screen will be instantly updated to show the end section of the
present text file, The cursor is set to the top line of text on screen.

<Command C> - Change mode

All other commands are inar:ive while in CHANGE (and [NSERT) mode with the
exception of Command A (AGAIN) which can be activated by pressing SYMBOL SHIFT /
A,

while in change mode you are not just limited to a screen full of text but have
access to the entire file. Cursor keys will still give you fast up/down movement
without the need for leaving CHANGE mode.

Tabs can be used in both of the text eatry modes. These are entered, for
convenience, by pressing SYMBOL SHIFT / SPACE. Tahs are useful in that they format
the text with the minimum of memory being used. There are two. things you need to
remomber about tabs:

1. A tab must be fully deteted before it will disappear,

2. Lines are only fully updated when you ieave them. Some tabs will be seen to
be wrong until you move to another line and the previous line is updated.

A 1ist of special keys is given in fig. 1.0.
{Command 0> - Defete lines

QOnce entered you then have to enter the number of lines (from the cursor iine) you
wish to erase. There are two exceptions:

1, By entering a '*' instead of a number, you will erase from the cursor Tine to
the end of the file.

2, If there is a block of text you wish to erase but are not sure of its length,
go to the end of the block and place on the line just after the biock a '-’
character. Make sure it is the very first character on the line, Now go to the
top of the block, type '0' followed by *-' and then press ENTER,

<Command &> - Get file

This comnand is written in basic for convenience. The current file name will be
displayed and you will be asked whether you would like to change it., Next you are
asked whether you would like to load the file or just verify it, If there i5 an
errgr in loading you will have to type RUN to re-enter.

{Command H> =~ Help Mode

If you wish to know which of the command letters does what without having to
consult the manual, then press 'H' and any of the command keys. A very brief
description of the command will be displayed on the top line.

To exit from this command, type CAPS SHIFT / EBIT,

<Command I> - Insert mode

Same as 'Change mode' {Command () except that instead of writing over characters,
you write in-between them,

<Command J> - Join files

Same as command G (GET) except that the file will be loaded onto the end of the
present file.

<Command K> - Kopy block

Te move a block of text, simply place delimeters before and after the text, e.g.
"-** 1" before, and "-" after.

These delimeters must be at the start of each line. Set the cursor to where you
want the block to be copied (the cursor MUST NOT be pesitioned amywhere inside
this block). Now simply enter command K and then enter your start delimeter
{e.g. -**1) and then press ENTER, While the text is being copied, it will be
printed to the screen, The screen may appear disorganised during this operation.

<Command L> - Locate string

It will first ask: Anywhere/start? This refers to where the string is to be found
{elther at the start of a line or anywhere along the line). It will be set to
A-nywhere when vou enter, but if you wish to find something only at the start of a
tine then type 'S* then press ENTER. Now enter the string and press ENTER,

There are two extra facitities available:

1. Entering "\I" will represent any character.
2. CEntering "*" will represent any number of characters.

N.8 These must not be entered at the beginning or the end of the string because
this is ambiquous. [f you wish to search for the character "\", then you must
enter two of them to represent one ("\i").

<Command 0> - Set workspace

If you wish the assembler's workspace to be put after the end of the file, then

this command need not be used. Yo set the workspace address, simply type in the
new address and press return. To set workspace back to the end of the file type
**' instead of any address.

<{Command P> -« Print file

It will first ask whether you are sure, typing 'Y' will output ail the characters
from the cursor position until it either reaches a line starting with the
character '-' or the end of file.

<{Command Q> - Quit

Quit will ask you whether you are sure and if you are you will immediately return
to BASIC., You can re-enter the editor without losing your file by typing RUN /
ENTER.

<Command R> - Replace string

Firstly you will be asked: Stop/Continuous?. A continuous replace would replace a
specified number of strings with what ever was required. The STOP mode allows you
to see what you would be replacing and gives you a thoice of whether to replace or
not.

The format is very simple: {Delimeter] First string [Delimeter] Second string
[Delimeter) Number to replace.

The delimeter can be any character which does not appear in efther of the two
strings, All the delimeters must be small characters.

e.g. /STRING TO BE REPLAL_O/REPLACEMENT STRING/NUMBER TO BE REPLACED

The number has to be entered in decimal and can be anything up to 9999. If you
wish to replace all the strings in the file that match, then instead of entering a
number, simply enter '*',

The replace always starts at the cursor line and ends at the end of the file.

{Command 5> - Status

Status refers to the left of the top line where you can either display cursor
position along line or file end in hex. Simply press the 'S’ key until you get

the desired status.

¢Command ¥> - Top of file

This will take the cursor and the ‘'screen window' to the top of the file.

¢Command W> - Write file

As with the command 6 (GET), you have the opportunity af changing the file name

before saving.

<Command 7> - Assemble file

After pressing 'Z' you will be asked to enter assembly options {see assembler user
guide). Once options are entered press ENTER.

For workspace, see command 0.

SYMBOL SHIFT A

CAPS SHIFT EDIT
DELETE

ENTER

CURSOR LEFT

CURSOR RIGHT
CURSOR UP

CURSOR DOWN
CAPS SHIFT SPACE

SYMBOL SHIFT
SYMBOL SHIFT ENTER

Same as command A, but works in
CHANGE and INSERT modes.

Exit from command.

Move back one space, make position
blank.

This will cause the present cursor
line to break in two at the cursor
position,

Move cursor back one character,

Move cursor forwards one character.
Move cursor up one line, If the key
is held down long enough, the cursor
will disappear and fast scrolling
will be jmplemented. Cursor will
reappear when the key is released
(also CURSOR DOWN}.

Move cursor down one line.

Clear line from cursor position to
end of Tine,

Insert tab intc line,

Delete to last tab stop or, to last
character other than a space.

Fig 1.0 - Table to show command functions which can be used while in CHANGE and

INSERT modes.

A AGAIN

8 BOTTOM
€ CHANGE
b DELETE
G GET

H HELP

I INSERT
J JOIN

K Koy

L LOCATE
0 WORKSPACE
P PRINT

Q QuiT

R REPLACE
S STATUS
T ToP

W WRITE

z ASSEMBLE

find next occurrence of previously
entered string.

Move to bottom of file,
Change text in file.

Delete a number of lines.
Load, or verify, a tape file,

Gives a brief description of the
command on the top line,

Insert into text file.

Join two tape files together,

Copy a block of text.

Locate a string of text.

Set new assembler workspace addrass.
Send file, from curspr, to printer.
Return to BASIC,

Replace one string with another
string.

Toggle status.
Display top of file.
Save file to tape.

Assemble present file.

Fig. 2.0 - This table gives you a brief description of the commands

available.

MACRG ASSEMBLER
OVERVIEW

There are many types of macro assembler curvently available, Most of these offer a
"hardwired” instruction set for a particular machine and allow macros to be
defined in terms of these instructions. This is quite reasonable as assemblers
are generally used on a single machine to generate code for that machine and a
built in instruction set does decrease assembly time. So why depart from this
tried and trusted recipe? Well, this assembler was conceived with two main goals
in mind: To be able to assemble code for CPU's other than the host., To be able
to assemble code in times comparable to assemblers with hardwired instruction
sets. In our opinion both these goals were realised,

The assembler comes with a ready compiled library defining the I80 opcodes (held
in RAM for speed in non-disk systems).

Other features supported by this assembler are conditional assembly and even
conditional macro statements, iteration directives within macros, access te user
defined option flags allowing simple assembly switching without modification of
any source code and extensive arithmetic and logical expression handling.

USER GUIDE
This guide assumes & knowledge of normal assembly code.
Code format

Considerable freedom exists in the format of files acceptable to this assembler:
Lines can be up to 254 characters long. But there are a few basic conditions that
must be adhered to in order that the assembler knows what the code is supposed to
mean, these are:

1) Labels/variables may appear amywhere along a line, but if they do mot start in
column zero then they must be immediately followed by a colon (Unless they are
part of for form an expression),

2} Macro instructions may not appear in column zero as the assembler will confuse
them with labels.

1) files must be terminated by an END statement.
Basic primitives: DB & EQU

It was revealed earlier that the 780 mnemonic set was not built into the assembler
but were defined as macros in terms of more primitive instructions, We will now
consider these primitives and define their syntax.

1} Define byte "DB".

This is the most used primitive in instruction set macro definitions (Have a Took
at the listing of the 280 instruction macros!). It's job is to generate one byte
of code representing the vatue of the expression or list of expressions following
it, These expressions must yield values between -256 and 258 inclusive. Here are
some examples of the use and forms of the DB instruction and the code it
generates. (This also shows off the expression handling capabilities of this
assembler, S0 see the section on expressions for a detailed desription of these
facilities.)

0000 00 bB 0

0001 1234 DB 12H, 3aH ;A Comment
0003 48454C4C

0007 4F 205448

0008 45524521 DB “HELLO THERE!®

000F FE pB 111111118 - 1

0011 2¢ DB "H"-T70d<2

0012 00010203

0016 04050607 0B 0,1,2,3,4,5,6,7

001A FFOOFF DB 1<2 , 5>20, "B"<=424

Cad -~ ”~
Program ~ A
Counter ~ Lode as entered in file
-~

Code generated
by DB
instructions

2) Label equate "EQU"

This statement is the same as in other assemblers and is used to set labeis to
particular values (which cannot be changed - more on this later}. For example:

234 LABEL: EQU 12344

ARAA A NAME: EQU 10101010101010108

0csc STT TTS: EQU 123*64-LABELL

003 COLTERO EQU 770 sLabel in cotumn zero

~
-

Result of
assignment
is put here

Notice that "$"s and "-"s are allowed as part of label names, Labels can be of any
length but only the first eight characters are significant.

1) Expressions

As stated earlier; this assembler supports quite extensive arithmetic and logic
capabilities. These facilities are no luxury and are used extensively later in
macro definitions, Algebraic logic is supported with nestable parentheses and four
rumber bases.

HE X a.g. 10004 (base 16)
BINARY 2,9, 101011118 (base 2)
OCTAL e.g. 570 (base 8)
DECIMAL e.g. 65000 {base 10)

Aiso here is a 1ist of operators, their functions and precidence.

Operator Precidence Use Function
+ 5 +A Unary Plus
- 5 -A negate
! 5 LA Logical complement
>> 4 351 Rotate A right B bits
<< 4 A<<B Rotate A left B bits
* 4 A*B Multiply
/ 4 A/B [nteger division
% 4 A%B A& modulo B
+ 3 A+8 Addition
- 3 A-B Subtraction
& 2 A&B Logical AND
Z A8 Logical OR
2 A~B Logical XCR
= 1 h=B Test equality
> 1 AXB Greater than
>= 1 A>=B Greater or equal
4 1 A<B Less than
<= 1 A<=8 Less ar egual

Precidence.(tpe relative pind1ng of an operator) is given as a number from 1 ta 5
- Where 5 indicates the highest binding power. O0f course brackets may be used to
alter the order of evaluation of an expression.

Labels and undefined vatues

In the preceeding section on the EQU instruction it was shown that labels could be
set to the value of an expression, and that expression could contain labe)
references. 1In such situations the reference must be to a previously equated
Tabel otherwise a default value of zero will be used. ie:

0000 LABEL]: EQU LABELZ2*100H
00Q2 LABELZ2: EQU 2

With gach label there is stored a fiag which indicates whether or not the label
contains a tot;l]y correct value, this will be set true in the second equate but
fé]se in the first one. Certain statements that use expressions test this flag and
will give an error if the expression contained an uninitialised value. This flag
is propagated whenever a label/variable is set to an expression, even through
macro arguments (See section on Macros with arguments).

2} Macro definitions

For the uninitiated a macro is a single entity which reprasents a number of other
instructions which can themselves be macros. Tg itllusirate this further let us
now define a macro.

DEFMAC ("MACRONAME®) ;This is how we
;define the macroes name

DB 770 ;Generate a byte
;containing 77 octal
;This is how we end
;a macro definition

0000 3F MACRONAME :This is how we
END ;invoke the macro
;End of source code

Notice that the macro definition did not generate any code but when the macro was
invoked it generated a byte containing 77 octal (3F Hexadecimal). So the upshot
is that invoking a previously defined macro assembles the code present inside it's
macro definition, Macros can be thought of as procedures in some high level
languages (Such as PASCAL) which must be defined before their use. This type of
macro is of timited use though because it always generates the same code when
invoked and in the following sections we will deal with how to define macros which
generate different code when invoked in different ways, but it is worth looking at
how we can define macras to be used as 280 instructions with this type of macro:

:Definitions of the 280 instructions NOP & HALT
DEFMAC {"NOP"}

DB 00K
END

DEFMAC {"HALT"}
08 76H

END
0000 Q0 NOP
0001 76 HALT
END

It is also possible to define macros which consist of more than one word as in
this example:

DEFMAC ("DD-THREE-NOP3™)
D8 00¢,00,00

END
G000 000000 DO THREE NOPS

Although this is a trivial example it illustrates how "-"s are used to sgparate
the words in multiple word macros. Notice that spaces cannot be used inside the

DEFMAC statement.

Macros with arguments

1n order that macros can change the code they ganerate - we must have some method
of passing information to macros when they are invoked. We do this by embedding

arguments into the macro when we invoke it. There are two types of argument that
we nead to differentiate between,

1) Numbers, including expressions labels/variables and numeric constants,
?) Constants, including register names and some opcode maemomics.

Most macros that have register names as arguments usually only use a subset of the
total number of registers available and similarly macros that require numeric
arguments require only numbers within certain bounds. 3o to cater for this
requirement the assembler has the ability te define sets df registers (Formally
called constants) or subranges of numbers.

Constants

Censtants are names which can take on a value (a bit like labels} but which are
totally distinct from labels and variables in that they cannot be used in
expressions. The value a constant takes depends on it's use. Here's how we
define constant names:

DEFCONST (BC,DE,HL,AF).

This definition does not generate any code, of course, and it's purpose is to
inform the assembier which names are constant names thus preventing them from
being used accidentally as labels.

Sets of constants

We are now in a pesition to use the constants we defined earlier. To do this we
must ¢ollect them up into sets; we do this in the following way:

DEFSET REGI6 = {BC,DE,HL},

We have now defined a set called REGLS containing the constants BC,0E and HL.
Thase constants now have a value if used in the context of REG1E - their values
are assigned starting at zero and increment for each name in the set, so BC has
the value O, DE has the value 1 and HL has the value 2. [t must be emphasised that
constants are NOT treated in the same way as labels and cannot be used in
expressions and further more; they only have a value when they can be fournd in a
set and their value depends on which set they are used from. To illustirate the
use of sets and show how arguments are used we will now consider how we would
define a macro which will generate the code for ali the 780 8 bit register to
register lgad instructions. ie: LD B,L etc.

Firstly we must define a set of constasts which contains the name of all the
registers this instruction is valid for:

DEFCONST (A,B,C,D,E,H,L,INVALID).
DEFSET R8 = (B,C,0,E,H,L,INVALID,A).

Notice that the order in which constants are entered into the DEFCONST statement
is not important but the order they are put in the DEFSET statement i, and also
that a *junk™ constant was needed to pad out the }ist. ie: We need L to have the
valuve 5 and A to have the value 7 and no register has a value corresponding to 6
s0 a junk name is used.

10

Now lets define the macre:

OEFMAC ("LD*,** R8,RB)
DB 40K + #0*8 + #1
END

The asterisks in the macro name define where the arguments are to appear and the
Tist of setnames after the macro name string define which set each argument
belongs to. Each setname corresponds to each asterisk in the name string. The
argument values are passed to the macro in a set of Jocal variables that only the
macro may access, these have the names: #n where n has a value in the range O to

.

A look at the opcode for the instruction we are defining shows that it's value is
a combination of some preset data and the numbers of the registers it is to use.
The DB instruction in the macro will faithfully generate the opcode for this
instruction.

Now lets use this macro:

0060 78 LD A,B
0001 5F LD E,A
0002 5A LD £, D

Notice how spaces are ignored when invoking macros. Spaces are allowed anywhere
except in the middle of a name (i.e: HELLO is one name and HE LLO is two names) so
spaces can be use to separate arguments from the mnemonic for example.

Number subranges

1? is'also desirable to define ranges of numbers and attach a name to them as we
did w1;h constant sets and so another function of the DEFSET statement is to do
just that:

DEFSET BYTE = 0 TO 255

This has now defined a subrange of numbers calied BYTE containing all the numbers
from 0 to 256 inclusive. We can now use this set to define another 280 macro -
Toad tmmediate 8 bit register je: LD C,4

DEFMAC (\"LD*,*» R8 BYTE)
0B 6 + #0*8
DB #1

END.

Notice that the only difference between this macro and the last is the type of the
second argument, and, so that the assember knows that the macro name string
"LD*,*" has already been defined, the "\" is inserted before it in the definition.
This must be done whenever a macro name string is repeated otherwise the "Double
identifier” error message will be generated.

Here is how we can use this new macre:

0003 §620 LD 8,001000008
G005 3EFA tD A, OFAH
0007 2645 LD H, " E"

It is worth pointing out that constants may be used in any number of different
sets and the user must make sure that ambiguities do not arise because of this.

1

i instructions require an argument that has only one value to foliow
E::;alguzgﬂas: £X DE,HL are constant). Using the above methods_of defYningwE?c;os
we would have to define two setis: one.with HL in an the other with DEt‘gémes m:
is not desirable. So in order to obviate the need.to do this consta# ‘!1ustra{e
be used in macro definitions and will mean a set with one elament, To i

this let us define the macro €4 DE,HL:
;Assuming that HL and OFE have been defined as constants

DEFMAC ("EX*,**,DE,HL)
08 QEBH
END.

0000 EB £EX DE,HL ;Use of this macro

By now you may be wondering why we did not define a macro that used no arguments
in the above case., Such as:

DEFMAC ("EX-DE,HL") ;This is iliegal
DB OE8H
END.

i i ould be perfectly
f the names DE and HL were not defined as constants this macro w
icc:ptab1e but as they have been defined as constantsvthe assemblef would search
for a3 macro mask like this: “EX*,*" and so the *Undefined" error will occur,

i i i i for the user to write
it facilities so far covered it should nowlbe_poss1b1e : :
:;zyhgteown macros which can simulate any mnemonic in the 180 instruction set and
much more.

Conditional assembly

The main conditional assembly statement supported by this assem]erl1s the iF-E?D
and the IF-ELSE-END statement combinations, These are useq to(enc ?;? p?; ;th]
the assembly code and enable/disable the assembler assembling ?E% ;s 5 ost ﬁf
used for allowing once source listing to produce a number of di ergn v: sions 0
a program depending on 'switches' set at the start of the source code. He

brief example of it's use:

i i ine; sk systems it must contain code to
Here is a netional data storage rnut1ne,_for dis t C ;
wsi:e to the disks and for tape systems it must contain code to write to tape:

DISK: EQU O
TAPE: EQU 1

SWITCH: EQU DISK

...Lots of source code...
WRITE:

IF SWITCH=TAPE

...Tape interface code...

END i*

IF SWITCH=DISK *

...Disk interface code...

END

...Rest of source file.,.
* - The code so indicated can be replaced with a singte ELSE statement.
One point worthy of note is that the IF statemant works by evaltuating the
exprgssion and if it is zero it is taken as ‘false', if it is non-zero it is
considered 'true', This means that the first IF statement could have been
replaced with the following:

IF SWITCH

But in this example it makes the statement less clear.

The IF statement may also be used inside macro definitions, enabling macros to
change at invocation time the way they assembie,

Here is a small but useful example to illustrate this:
Supposing we wish to define a macro which performs the following operation: LD

rr,(HL) where rr i3 another 16 bit register from the set HL,DE,BC. so if we were
to invoke LD BC, (HL), the following instructions would be used:

1) LD C,(HL} ;Get low byte
2} INC HL

3 LD B,(HL} ;Get high byte
1) DEC HL sRestore HL

A similar sequence would be required for the register DE,

Or the other hand we might wish to dg this instruction: LD HL,(HL). 1In this case
the follawing instructions would be needed:

1) PUSH AF ;Save AF

2} LD A, (HL) i6et low byte

3) INC HL

4) LD H, (HL) ;Get high byte

5) LB L,A ;Load up low byte
6) POP AF ;Restore AF

S0 we need three different code sequences for each type of instruction. This can
be done with the IF statement in a macre definition:

DEFCONST (HL,DE,BC),

DEFSET RR = (BC,DE,HL),

DEFMAC ("LD*, (*)" RR,HL)

IF #0=0 ;Case for LD BC,(HL)
LD ¢, (HL)

INC HL
LB B, (HL)
DEC HL

13

ELSE [F #0=1 ;Case for LD DE, (HL)
LD E, (HL)
INC HL
LD D, (HL)
DEC HL
ELSE IF #0=2 ;Case for LD HL,(HL)
PUSH AF
LD oA (HL)
LNC HU
LD H,(HL)
LD LA
POP AF
END END END ;0ne for each IF
£ND

0000 F&7EZ2366

0004 6FFi LD HL, (HU) ;Invocations of the
macro

Q0006 4E234628 LD BC,{HL)

Q004 5E23562B L0 DE, {HL)
Argument modification

When using macros inside macros it is possible to modify the value that a macro
definition sees a constant argument as. This is done by immediately following the
argument in the macro invocation with a value te be added on to the constants (set
refated) value in square brackets: ie: LD € 1 ,A if invoked inside a macro would
generate the code for L9 D,A (See the Z80 macro library).

This faciiity can be used to simplify the above example:

DEFMAC (“LD*, (*)",RR HL}
IF #0<2 ;BC & DE case
LD € #0*2 ,(HL)
INC HL
LD 8 #0%2 , (HL}
DEC HL
ELSE
PUSH AF
LD A, (HL)
NG HL
LD H, (HL}
LD L,A
POP AF
END
END.

So although this is a complex facility to use it does simplify the code in certain
circumstances,

Tteration and the variable

It is often useful for macros to produce tables etc, and to do this they must be
abie to have a conditional looping statement - This assembler has two: The SWHILE
- END sequence and the $REPEAT - SUNTIL sequence and there is a $BREAK statement
for breaking out of these sequences. Their use is best ijlustrated by example
because they are not very different from similar statements in high level
languages.

14

Here is a macro which will fil1 a number of bytes with a particular value at
assembly time:

DEFVAR (COUNTER).
DEFSET NN = 0 TO 256.

DEFMAC (“FILL*BYTES-WITH*" NN NN}
COUNTER:= #0

$WHILE COUNTER>O
08 #1
COUNTER : =COUNTER-1

END
ENOD.
0000 AAAARAAA
0004 AARAAAAA
0008 AA FILL 9 BYTES WITH OAAH ;Heres how we use it.

Notice that we used what Jooked like a label as a counter. This was in fact a
variable and was defined as such in the DEFVAR statement which works in much the
same way as DEFCONST. Variables may be used anywhere that Tabels are used but must
be assigned to using the =" rather than the EQU for normal labels. The advantage
of variables over labels is that variables may be assigned to more than once
without the assembler cbjecting. They can, of course, be used anywhere labels are
used and can sometimes be used to advantage instead of labels but it is best to
restrict their use, otherwise mistakes can be made which will not be picked up by
the assembler.

The SREPEAT is used in much the same way as the SWHILE except that the condition
ig tested at the end of the loop rather than at the beginning.

je: SREPEAT
...Some code...
$UNTIL expression

when the $BREAK statement is encountered inside one of the above loops, assembly
breaks from it's current position and continues after the end of the loop. This
can also be used to break out of macros.

Assembler terminating information

When the assembler termimates it prints on the screen a few statistics about the
assembly: The final value of the pseudo program counter ($), the final value of
the LOAD pointer, the start and end addresses of the workspace used and if any
orrors- the number of errors and the assembler pass they occurred on.

Creating a library

As has been stated earlier this assembler comes with a built in macro library
containing all the 780 instruction set. It is possible for the uwser to change
this library and thus personalise the assembler as little or as much as he likes!
It would be possible, for instance, to get rid of the Z80 set and put in the macro
definitions for the 6502 instruction set. One need not even put in micro
instruction sets: the user could create his own language made out of macros.

15

To add a new librar j
¥ the user must first write

% . t r rite it as he would
sroszgzd(zgetggg Tﬁ:rﬂs;;b;:ry bgy;t]nto the assembler is sup;?fegtzsrtgzsizg;er
provided so t . y modify it's contents}, The file i
assegb]eﬁ aE ggg;;o?é fThe tables thus generated are then pulealstﬁgegngssgmgged
File start adqiood in ﬁont of the source file {modify address at 6148H to h n
Starting ot grres a:g t;glggg ;lle).]';he version supplied has the sourceofglgnge
Tofring at , acro library comes ta about $FC i i
o fi}etsgzrrozzg ;:av1ng as_much room as possibie for the ne3H1?gr;;ttge noving.
Tiorary when £1om Gen ?0ving the fiTe start down to just past the eng g Tav1ng
Hola 3ghen finis ed. he_endlof the new library is indicated by the so ge
1Sing the men Dptig:c:h:egg;gg ;q %ze assembler terminating information ec?:hen
foing the ield will point to the enm i p

15 "new” assembler may then be saved on tape {600CH ts gngiltg$;;lssgzcgiuaIL

GENERAL USER GUIDE

Assuming that a file h
as been created ini
correct format, it is assembled as fcilgsg?d]n7ng assenbly source code in the

1} Type '2' while in the editor,

2) Enter option letters required,

1 Press ENTER and wait.

4) Either, assembler will return with RO errars or any

errors witl be indi
reassenbie, cated and the user must correct and

Guide to options

E . Stop and indicate error position with cursor.

L - Produce 1istfile,
% X groguce symbol table of Tabels/variables.
! Sro uce other symbol tables {macros, sets & constants)
" - lgngl?ny output to printer,)
- ile contain i i
K AL 5 a Joad directive then store object in
- Create a new "buj in 1i " i
libraries.ﬁw built in Tibrary" (See section on

Load directive

This will cause an j
y object generated t !
the load address. (If the M option ?sbgn?Ut 10 memory at address following

f.e, 1=
ORG 1000H
LOAD 800CH
%88? 2 02 00 o gi?z
END

will put the hex codes 47,21,02 i
- & j
Code s assenbled s i i wae 1o gs,a:tiggag? at 800OH, inte ram (Althaugh the

16

LIST directive

This is a macro in the built in library which will switch on an off the list
option (above) whilst printing a source listing It is used as follows:

.ooosource code (A)
L1537 OFF
... s0urce code (B}
LIST ON

...source code (C)

e Jist option was used in invoking the assembler)
section (B) would be missed and section (C) would be
xed with the 1ist option then only section

in this example (providing th
section (A} would be Yisted,
tisted. If the assembler was not invo
(CY would be listed,

System variables

Certain system variables are available for use (with care) by the source file
during assembly. These are accessed by putting"$n" where n is between [
These may be used anywhere a standard label/variable is used and contain the

following:-

$0 {or just §) Pseudo program counter,
1 Load address pointer.

$2 Option flags.
-- bit O reserved
bit 1 print flag
bit 2 reserved
bit 3 1ist option
bit 4 symbol option
bit 5 reserved
kit 6§ reserved
bit 7 error stop option
bit 8 'T' option
bit 9 'M* option

bit 10 Store to memary enable

bit 11 reserved

bit 12 'G' option

bit 13 '1' option

pit 14 '2' option

hit 15 '3* option
The '0*, 'l*, '2' & '3' options are not used by the assembler but are available as
a method of externally passing information into an assembling source file, This
could be used in conjunction with the conditional IF statements te perform
assembly switches without affecting the source file, ie:

If $2 & 00010000000000008
...source code (A)

ELSE

...source code (B}

END 17

S0, if the assembler was } i

invoked with the »po
assemb "gv i i
assemhlzg.and if the "0" option was omitted th

option source code (A) oni
woul
en only source code (B) wuﬁld bed be

Errors

e are ten dif erg vear number f
“Iel ¥ fer nt err Qr responses and h o t'lese will

eac cover a nu er o
”elﬂ 15 a list of their Healnllgs.

PHASE -~ A label had :
a qi fferent value

;h!s can be caused by macros generating diffggeﬁgss o

eing initialised correctly,

eg to that on pass two.
code on each pass, or labels not

SIZE == This en
Si26 of & vatun compasses a number of conditions mostly concerned with the
SYMBOL -~ A symbol
oxpesed. ymbel of one type was foung where one of another type was
A e
RGM Argument error, Usually on macro definitions,
UNDEF == A symbol/macro has not been defined,
SYNTAX -~ Synt

ax error often] .
characters are used. € oceurs in macro name strings when illegal

- S
ENF INITE A IOUP us 19 HPILE OF $REPEA| has iter ated over 655 time nd i
35 3 & S

INITIAL - Label initialisation errgr.

EQF -- i
Unexpected end of fife found, Usually too few END's in file

SY§ -~ System error - This is generated

overran the start of the source fils if a lidrary was made which

18

SPECTRUM MONITOR (SPECTREMON)

LOADING
SPECTREMON occupies the memory from FOOOH to FFFFH (7000H to 7FFFH on 16k

machines). There are two copies supplied:

Side 1 -~ 48k version
Side 2 - 16k version

SPECTREMON has a small BASIC toader which makes sure the stack is below the
program,

LOAD™

Now load your own program (to be debugged) if you have not already done so.
Type:
RANDOMEZE USR 61440 (28672 on 16k machines) or RUN 9999 to execute SPECTREMON.

INTROOUCTION

Machine code is very much harder to debug than BASIC since are no error mesSages
to help you. Usually what happens is the system crashes and it is impossible to
tell where the fault was. Some faults can be found just by following through your
source code, but others are very difficult to find, This is where SPECTREMON
comes in. SPECTREMON allows you to follow though your programs, one instruction at
a time, with the help of a 'Front panel’ display. The front panel ggeupies the
top nine lines of the screen, while active, and does not scroll. Al the active
registers are displayed (except the 'R' register which is constantly changing}
plus the memory to which they point.

The FRONT PANEL Explained.

>PC 0000 D1

SP EFES (2028) I ¥

Ix 000C F3 fIX+004) F3 11110011
1Y 5C3A FF {IY+00H) FF 11111111
AF 0054 Flags Z H P (0000000
HL 2028 FO 21 (HL) FD 11111101
DE 5CF9 00 00 GG ¥FO 00 20 20 20
BC FOO0 ED 73 D8 FF CD 65 F3 CD

In the top left hand corner, there is an arrow, This arrow is used for changing
the values of the 16-bit registers down the left of the display. The arrow is
moved using the up/down curser keys and the 'R' command is used to change their

vaiues.

The first line shows the value of the PC (Program counter} plus the mnemonic at
that address.

The second line shows the value of the SP (Stack Pointer) tollowed by the last
16-bit number to be placed on the stack. Along the same line is the value of the
'1' register.

The third line shows the value of the 'IX' (index Register) followed by the value
at that address. Next along the lire the current (I1X+dd) followed by the value at
this position, in hex and then in binary.

19

The fourth line is identical to the last except the register in guestion is now
the 1Y (Index Register),

The fifth 1ine shows the value of the HL register pair followed by the value at
this address and the one after. Next, the value at the HL address is shown again
along with t's binary equivalent.

The sixth line shows the value of the DE register pair followed by the value at
that position and the seven positions after that.

The seventh line is fdentical to the fast except that BC is now the register pair
being disptayed.

Commands in Petai)l

All values displayed are in hex with the exception of a few in binary. A1l values
entered must also be in hex and not dacimal,

<8> - Breakpoint

You can put SPECTREMON into a centinuous mode using the 'S0' command. There are
two ways to stop the continuous mode:

i. Press the SPACE key.
2, When a breakpoint is encountered.

There are ten breakpoints that can be individually set to any address. Each
breakpoint has ft's own down counter. What this means is that if, for exawle,
you set the down counter to 5, SPECTREMON would stop the continuous mode after it
has encountered this breakpoint five times.

These breakpoints are only activated while in 'Sg* mode {see $ command),

a) Set a breakpoint
Format: Bbb aaaa cccc

Breakpoints can be set at the beginning of amy I80 #nstruction, even if the code
is in 'Read Only Memory' (ROM). To set the breakpeint enter the command letter (8)
followed by the breakpoint number (bb). This can be anything between 0 and 9.
Next enter the address at which you want the breakpoint to be placed (aaaa)
followed by a down counter (cccc). The breakpoint will only be activated when
ccce reaches zero. If you want a breakpoint te he activated the first time it is
found then set cccc to 1. If, for example, you want the breakpoint activated
after 4096 times round, then set cccc to 1000 {hex). When a counter reaches zerg
it is then reset to is initial value. After pressing 'ENTER' all the active
breakpints will be displayed in the same format as they are entered,

b) Reset a breakpoint,
Format: Bbb

To deactivate a breakpeint, just enter the breakpoint number (bb). A1) the active
breakpoints will then be displayed,

¢) Display all active breakpoints.
Format: B8

This will display all the active breakpoints in the foilowing format:

20

01 3F45 0001

I i Down counter {cccc)
| 1

| Breakpeint address {aaaa)

I
Breakpoint number {(bb}

> - Copy
Format: Cvv ssss 1110

This command will fill an area of memory with a specified value {vv} starting at
addrass (5s5ss) and of length {11171).

Example:

JCFF 4000 1800 will fill the screen with FFH's,

<> -~ Disassemble
Format: 05555 eeee 1111

i i inish at address
is will disassemble the instructions from address {ssss) and finis
IEL:e?I The command wiltl pause after (1111) lines have'bee? dispiayed. Press any
key except ‘SPACE' to continue, Abert command by pressing SPACE® even if it is .
sti1} serolling. If (1111} is not entered the value will default to the number o
lines available for scrolling.

Example:

100000 0010 0040 will display the mnememics of the

tnstructions between addresses
0000H and DOLOH.

0000 DI

0001 XOR A

0002 LD DE,FFFFH
0005 JP 11CBH

0008 LD HL,{5C50H)
000B LD (5C5FH)HL
000E JR 0053H

Format: O

This will disassemble from the current PC (PROGRAM COUNTER) address. Press
'SPACE' to abort command.

<Ed - Execute
Format: Essss

This wi from any program will
ihis will execute the program at address (ssss). A return
take you back to SPECTREMON provided you do not corrupt the stack,

Example:

JME000
6040 (00) CS.
1£6000

RANDOMIZE USR 61440 {28672 for 16k) will return you to SPECTREMON.

21

Format: E

This will execute the program at the current PC address,

<F> - Frontpanel
Format: F

This will eithar activate the frontpanel or deactivate it depending on its current
status. Use in conjunction with the § {Single Step) command. The frontpane? is
on when you first enter SPECTREMON.

<I> - Intelligent copy
Format: 1Issss ddéd 111

This will copy the data, of length (111), from address {ssss) to address (dddd}.

This is an intelligent copy so even if these two blocks overlap the data will not
be carrupted.

Example:

JI7000 6FFF 1000 will copy 100CH bytes from 70004 to 6FFFH without corrupting it.

> - Jump
Format: Jaaaa

This sets a breakpoint at address (aaaa) and executes the code at the present PC
address. This is different from the normal breakpoints in two ways:

1., This cannot be used inside ROM.

Z. This is quicker than using the normal breakpeints as this does not step
through the iastructions,

Format: J

This will set a breakpoint immediately after the instruction at the PC address.
This is useful, for example, if your program calls a routine in the spectrum
monitor, When the PC points to this CALL you can simply use the 'J' command to
execute the routine and stop it once it returns back to your program.

M> - Memory
Format: Maaaa

This command allows you to modify any part of memory. (aaaa) is the start address
Enter valyes along the current line and then press 'ENTER' to enter them into
memory. There are also other symbols you can use in this mode.

: Move back one byte.

» Enter Ascii (e.g. ,R = 52H)

/ Change address (e.g. /1000 will take you to address 1000H).
. Exit from command.

Example:

JME000

6000 (C9) 21 Q0 60 3E FF ED B1
6007 (00) C9/7000

7000 (Q0) ,H,E,i,L,0 FF

7006 (00)

7005 (FF)

7004 (ar)

22

<0> - QOutput
Format: Opppp vv

Output value (wv) to Port (ppppl.

Example:
YOFE 00 will output 00 to the port OOFE (border port).

)
JOFE FF

<P> -~ Printer
Format: P

Toggte printer on/off,. The frontpanel will always be sent to the printer after
any command, while it is active,

Q> - Query
Format: Qpppp

Tnput from port {(pppp) and display value,

Example:

1G0 will input from port 0QG0O.
FE

1q

<R> - Register
Format: Rvvvy

i i teft of the screen. This
i ontpanel active there is an arrow at the top
H;::t:h:ofzozzg?zger. This command witl alter the register va1u§;]p012:eguigogyis
Ehe arrow, to {vwvv). You can use the cursor keyg, at any time while
flashing,'to move this arrow to point to the desired register.

Example:
1f the arrow is at the top and you want to single step through a program at 600CH
then use the 'R' command to set up the PC address:
JRE00C will set PC to 6000H.
<§» - Step

Format: S
Step through one instruction at the current PC address. Use the 'R' command to
initially set the PC value.

Format: SO

This is the same as 'S* on it's own except this wil; cgg;;gg? z;ipp1$gizn§;; be
i : int is encountered, or you press the .)
522282;e3 E:ez:zofrontpanel is not Bn the screen and will be considerably faster

23

<T> -~ Tabulate
Format: Tssss eeee 111]

This will tabulate the memor

Example:

égggOO 0020 1

F3 AF 1L FF FF C3

0008 2a 5D § 0 1
001C¢ C3 F2 15 FF FF EF FF FF
0018 2A 50 5C 7E €D 7D 00 00

Format: Tssss egee 1111 0

: y (in hex) f
stopping after (1111) Jines have bee:)diggTajggress {5835} to address (eeee)

value will default to the number of lines availabt

If {1111) is not entered, the
e.

(wait for k
C 22 5F SC 18 43 (keypress) Bypress)

Same as above except this will also display the Ascii values

Example:

)T0100 0110 ¢ ¢
0100 4F D2 41 4E C4 3¢ BD 3F

0 . AN . < . >
0108 BD 3C BE 4C 49 4E C5 54
< oL PN LT

:g:ice that any characters below 20H

Format: T

This will tabutate from th
e current PC ad .
Press any key to continue except 'SPACE 3:?3: pagsin

tabulation is stil} taking place.

<X> - Xchange
Format: X

This wil) allow you to di
’ splay the alternate regi
stepping a program remember to swop the registegssgizkssgéin

Y> - Clear screen
Format: Y

and characters above §0M are represented by a

g after filling the screen,
11 abort the command even while

If you are single
before proceeding,

Clear screen and display frontpane! (if active),

> - BASIC
Format: 2

Return control back to the BASIC interpreter

24

COMMAND SUMMARY

Command Arguments
8 bb aaaa cccc
B bb

B

C yv s$sss 1111
D ssss eege 1111
]

£ 5555

3

F

1 ssss dddd 1111
J aaaa

J

M aaaa

M

0 pppp V¥

P

Command description

SET A 'SOFT' BREAKPOINT

Where: bb = Breakpoint number {0 to 9)
adaa = Breakpoint address
ccce = Down counter

RESET A 'SOFT* BREAKPOINT
Where: bb = Breakpoint number

DISPLAY 'SOFT' BREAKPOINT VALUES
COPY VALUE THROUGH MEMORY

Where: vv = Value to copy through memory
3555 = Address at which to start
1111 = Length of copy

DISASSEMBLE INSTRUCTIONS
Where: ssss = Start address
eeee = End address
1111 = Number of lines before pausing

DISASSEMBLE INSTRUCTIONS STARTING AT PC
ADDRESS

EXECUTE PROGRAM
Where: sss55 = Start address

woso

EXECUTE PROGRAM AT THE PC ADDRESS
TOGGLE FRONTPANEL ON/OFF
INTELLIGENT COPY

Where: 5555 = Source address

dddd = Destination address
1171 = Length of copy

SET 'HARD' BREAKPOINY
Where: azaa = Breakpoint address

SET 'HARD® BREAKPOINT JUST AFTER THE
PRESENT INSTRUCTION

MODIFY MEMORY
Where: aaaa = Start address

MODIFY MEMORY AT THE CURRENT PC ADDRESS
QUTPUT A VALUE TO A PORT
Where: pppp = Port number

vy = Value to ocutput

TOGGLE PRINTER QUTPUT ON/OFF

25

Pepp QUERY PORT
Where: pppp = Port number MICRODRIVES

ey CHANGE REGISTER VALUE A version of the SPECTRE-MAC-MON for use with microdrives is saved after the
Where: vvvv = New register value standard tape versicn. Essentially it is identical to the tape version but
relocated up by 1k, i.e. 1024 decimal which is 400H.

STEP THROUGH ONE INSTRUCTION
To save this onto microdrive use the following procedure:

STEF THROUSH INSTRUGTIONS WITHOUT STOPPING

5555 esee 1111 TABULATE MEMORY
Where: ssss

1, Type CLEAR 25599.

Start address 2. Place the SPECTRE-MAC {microdrive version) cassette into
End address the recorder (SPECTRE-MAC side up).

geee =
1111 = Number of lines bef
ore pausing
$58§ 3. Type LOAD"":LOAD"" CODE.
eeee 1111 0 TABULATE MEMORY PLUS ASE1I
Where: ssss = Start address 4. Now save to microdrive cartridge by typing
eeee = End address

N j . dellmite]l 1 [} NE
umber of lines before pausing gﬁxgwﬂm";§;"gEECESEEAgSSBB,IGgggg

TABULATE FROM PC ADDRESS

nn

To load SPECTRE-MAC from cartridge simply type:
TOGGLE BETWEEN REGISTERS AND ALTERNATE

REGISTERS LOAD®"m";1;"SPECTREMAC*
CLEAR SCREEN To save the monitor to microdrive use:
RETURN TO BASIC 1. CLEAR 28671 (16k version) CLEAR 61439 (4Bk version)

2. Place the SPECTRE-MON (16k or 48k version) cassette into
the recorder,

3. Type MERGE"":L0AD"" CODE and wait for both parts to load,

4, Now save to microdrive cartridge by typing
SAVE*"m";1;"SPECTREMON"LINE 9999
SAVE®"m» .1 "MON" CODE28672,16384 (16k version), or
SAVE®"m"; 1;"MON" CODE61440,16384 (48K version}.

To load from microdrive just type

LOAD*"M";1; "SPECTREMON "

To save the MACRO library to microdrive:

1. After loading SPECTREMAC from microdrive use the 'Q'
command to return back to BASIC.

2. Type LOAD"MACROS" CODE 41984
This will load the macro library from tape,

Once Joaded, type RUN to re-enter the editor and save the macro library using the
W' command.

26 27

Finally, there are references n the manual to addresses for the tape version. The
mcrodrive verstons are a1 1024 (400k) greater. The addresses should be changed
as below,

Page 1, paragraph 4 - G0OOH becomes §400H.
AOOOH becomes A400H.

Page 16, paragraph 1 - 9175H becomes 9575H.
6148H becomes 6548H.
9FFDH becomes AJFDH.
9FCEH becomes AJCEH.
6000H becomas 64004,

28

SPECYRE - MAC SPECTRE - MON
Spectre-Mac is simiply the most comp- Used in-conjunction with Spectre-Mac,
rehensive Assembler available for the Spectre-Mon provides fast simple machine
Spectrum 48K. The essential difference code program development. It's many
between Spectre-Mac and the rest s the powerful features include.

facility to define macros. The manual
exptains how this powerful facility can be

Up to 10 breakpoints can be set in RAM or

used to assemble code for CPU's other than ROM each with a couniter which only
the Z80. activates the breakpoint at the pre-
determined occurrence. Breakpoints can
Some of it's many features include. also be displayed or reset at will.
* Copy value through memory.
*

DOO0EE00 000ODGHO0

* Full Screen editor with control commands Disassemble RAM/ROM,

to locate and change strings, copy blanks, Optional “frontpanel” which displays
insert strings, delete strings and much register contants, the contents of the
more. The Editor even has a unique side address held in the registers etc.

scroll facility so that lines of up to 2564 Modify register or memory.

characters can be entered. The ZX-Printer Intelligent copy to enable blocks of code
is also fully supported, to be moved without overwriting itself.
Ali the standard primitives and directives Direct tnput/Output to ports.

such as DB, EQU, LOAD, ORG etc. Single step execution with er without

*

* ¥
@ %

*
*

¥

* Extensive arithmetic and logical “frontpanel’ display. &
capabilities. Expressions can contain * Display memory and if required it's
nestable parenthesis and four number ASCil representation,
bases can be used, There ara no less than o

18 arithmetic and logicak operators.
MACRO DEFINITIONS

*

SRLEODORGE

DEFMAC (X, Y,...)

DEFCONST (X, Y....)

DEFSET VARS = (X,Y.Z ..)

DEFVAR (X}

Macros can be used within macros.

Conditional Assembly

IF..END IF .. ELSE ... END

Iteration and variables $WHILE - END,

$REPEAT - SUNTIL

$BREAK

* Complete macro library supplied {The Z80
instruction set}. User can personalise this OASIS SOFTWARE
as much as he fikes. For instance, remove Alexandra Parade
the 280 instruction set and replace it Waeston-su per~Mare
with the 6502 instruction set. BS23 10T

* Comprehensive list of error reports. Avon

Concise easy 1o follow manual. Tel. 0934 419921

aunoLoes

@
L)

o
™

GORELOLOD

*

*

*

NOW-OVIN-3H103dS

L2 2 Ly

00080 eReu0l

@ LHedevee

%

%

GdEvoobubdude

*

o
[
g seosheddh

e,

&
& A

-

ot

BEDEOBOBOEBOGOOL @

SGHETEOBOBOGDBOOBOGED

(>I8¥)

Any Oasis product failing to Load will be replaced without question.

SPECYRE - MAC

Spectre-Mac is simply the most comp-
rehensive Assembler available for the
Spectrum 48K. The essential difference
between Spectre-Mac and the rest is the
facility to define macros. The manual
explains how this powerful facility can be
used to assemble code for CPU's other than
the Z80.

Some of it's many features include.

* Full Screen editor with control commands
o locate and change strings, copy blanks,
insert strings, delete strings and much
more. The Editor even has a unigue side
scroll facility so thatlines of up to 2564
characters can be entered. The ZX-Printer
is also fully supported,

Ali the standard primitives and directives
such as DB, EQU, LOAD, ORG etc.
Extensive arithmetic and logical
capabilities. Expressions can contain
nestable parenthesis and four number
bases can be used, There are no less than
18 arithmetic and logicak cperators.
MACRO DEFINITICNS

*

*

*

DEFMAC (X, Y,...)

DEFCONST (X, Y....)

DEFSET VARS = (X,Y.Z ..)
DEFVAR (X}

Macros can be used within macros.
Conditional Assembly

IF..END IF .. ELSE ... END

Iteration and variables $WHILE - END,
$REPEAT - SUNTIL

$BREAK

* Complete macro library supplied {The Z80
instruction set}. User can personalise this
as much as he likes. For instance, remove
the Z80 instruction set and replace it

with the 6502 instruction set.
Comprehensive list of error reports.
Concise gasy to follow manual.

*

*

*

* %

SPECTRE - MON

Used in-conjunction with Spectre-Mac,
Spectre-Mon provides fast simple machine
code program development. It's many
powerful features include.

Up to 10 breakpoints can be set in RAM or
ROM each with a couniter which only
activates the breakpoint at the pre-
determined occurrence. Breakpoints can
also be displayed or reset at will.

Copy value through memory.
Disassemble RAM/ROM,

Optional “frontpanei” which displays
register contants, the contents of the
address held in the registers etc.

Modify register or memory,

InteHigent copy to enable blecks of code
to be moved without overwriting itself.
Direct nput/Qutput to ports.

Single step execution with or without
‘frontpanel’ display.

Display memory and if required it's
ASCil representation,

* * Ok ¥

*

¥ %

*

OASIS SOFTWARE
Alexandra Parade
Weston-super-Mare
Avon BS231QT
Tel. 0934 419921

Any Oasis product failing to Load will be replaced without questiorn.

72
U
m
Q
-
=
m
S
>
0
S
O
<

(>I8%)

b f 50000

e

0900000 §
l cboobdodg:

P 0000600000000 Q0(¢

DO

0000000

o

066000008000 00

90

o

0000000000000 0

5

00000000000

00Q000G0000G00000

00000000 00000000

	Title
	Contents
	EDITOR ASSEMBLER
	Introduction
	Command Description
	Command Functions

	MACRO ASSEMBLER
	Overview
	User Guide
	Expressions
	Macro definitions
	Macros with arguments
	Constants
	Sets of constants
	Number subranges
	Conditional assembly
	Argument modification
	Iteration and the variable
	Assembler terminating information
	Creating a library
	General User Guide
	Guide to options
	Load directive
	List directive
	System variables
	Errors

	SPECTRUM MONITOR
	Loading
	Introduction
	Commands in Detail

	MICRODRIVES
	Cassette Inlays
	BW
	Color

